Functional mechanisms of drought tolerance in maize

Nepolean Thirunavukkarasu
Division of Genetics
Indian Agricultural Research Institute
New Delhi-110012
tnepolean@iari.resi.in
tnepolean@gmail.com
Importance of Maize in India

Area: 8.55 m ha
Production: 21.74 m t
Productivity: 2.54 t/ha

Maize Utilization Pattern in India

- Food: 49%
- Animal Feed: 25%
- Starch: 12%
- Brewery: 12%
- Seed: 1%
- Poultry Feed: 1%

How to improve productivity?
- Better cultivars
- Better cultural practices
- Stress tolerance

Rosegrant et al 2009
The Palmer Drought Severity Index

IPCC weather report for 2030-2039
Yield loss - Water stress

- % yield reduction
- Emergence
- Pollination
- Critical stage
- Tasseling
- Silking
- Blister stage
- Milk stage
- Soft dough
- Hard dough
- Maturity
Phenotyping for Drought

Drought nursery, Summer 2011, 2012
- 88 genotypes/maturity group = 264 genotypes
- Alpha lattice design

Phenotyping
- Well-irrigated control
- Flowering stage stress

Locations
1. IARI, New Delhi
2. ANGRAU, Hyderabad
3. Maize Research Station, Karimnagar
Genotyping

240 genotypes was genotyped by genome-wide SNPs using Illumina Infinium assay.

~56,000 SNPs covering entire maize genome.

240 x 56000 = 13.4 million SNPs

LD Heatmaps

Chromosome 3

Chromosome 8

Cured SNPs

<table>
<thead>
<tr>
<th>Ch</th>
<th>Total (56K)</th>
<th>Cured (46K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7365</td>
<td>6005</td>
</tr>
<tr>
<td>1</td>
<td>6827</td>
<td>5557</td>
</tr>
<tr>
<td>2</td>
<td>2945</td>
<td>2239</td>
</tr>
<tr>
<td>3</td>
<td>6069</td>
<td>4909</td>
</tr>
<tr>
<td>4</td>
<td>5999</td>
<td>4815</td>
</tr>
<tr>
<td>5</td>
<td>5808</td>
<td>4766</td>
</tr>
<tr>
<td>6</td>
<td>4348</td>
<td>3485</td>
</tr>
<tr>
<td>7</td>
<td>4413</td>
<td>3568</td>
</tr>
<tr>
<td>8</td>
<td>4507</td>
<td>3695</td>
</tr>
<tr>
<td>9</td>
<td>3929</td>
<td>3154</td>
</tr>
<tr>
<td>10</td>
<td>3900</td>
<td>3088</td>
</tr>
</tbody>
</table>
Per se LD pattern

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>LD decay (Kb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$r^2 \leq 0.1$</td>
</tr>
<tr>
<td>1</td>
<td>200–300</td>
</tr>
<tr>
<td>2</td>
<td>200–300</td>
</tr>
<tr>
<td>3</td>
<td>200–300</td>
</tr>
<tr>
<td>4</td>
<td>300–400</td>
</tr>
<tr>
<td>5</td>
<td>200–300</td>
</tr>
<tr>
<td>6</td>
<td>100–200</td>
</tr>
<tr>
<td>7</td>
<td>200–300</td>
</tr>
<tr>
<td>8</td>
<td>200–300</td>
</tr>
<tr>
<td>9</td>
<td>200–300</td>
</tr>
<tr>
<td>10</td>
<td>200–300</td>
</tr>
<tr>
<td>Mean</td>
<td>200–300</td>
</tr>
</tbody>
</table>

- **LD decay**
 - $r^2 \leq 0.1$
 - $r^2 \leq 0.2$
 - > 5 MAF
 - > 10 MAF

- **Per se LD pattern**

- **Colors**
 - Highly associated ($r^2 > 0.8$)
 - Intermediate ($0.4 < r^2 < 0.8$)
 - Low ($r^2 < 0.4$)
Population stratification

Cross validation

Principal components
Model effect - ASI, Hyderabad

Mixed model for BLUPs:
3 location × 2 year × 2 treatment × 3 maturity group

R: GenAbel
1. G + P + Kinship + MDS + FDR
2. G + P + Kinship + MDS + Pop structure + FDR

R: GAPIT
3. G + P + Kinship + PCA + FDR
4. G + P + Kinship + PCA + Pop Structure + FDR

Anthesis- Silking Interval, Across data
P value heat map of significant SNPs

<table>
<thead>
<tr>
<th>SNP</th>
<th>Chr. Position (Mb)</th>
<th>ASI</th>
<th>Ear Length</th>
<th>Ear girth</th>
<th>Kernel/Row</th>
<th>Kernel Row/cob</th>
<th>100 K wt</th>
<th>Grain yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>PZE-10110942</td>
<td>1</td>
<td>96.54</td>
<td>157.96</td>
<td>166.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10115210</td>
<td>1</td>
<td>166.34</td>
<td>166.34</td>
<td>166.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10112083</td>
<td>2</td>
<td>164.83</td>
<td>164.83</td>
<td>164.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10113904</td>
<td>3</td>
<td>225.56</td>
<td>225.56</td>
<td>225.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10113262</td>
<td>4</td>
<td>26.56</td>
<td>26.56</td>
<td>26.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-102185808</td>
<td>5</td>
<td>5.8×10^-6</td>
<td>5.8×10^-6</td>
<td>5.8×10^-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-103033517</td>
<td>6</td>
<td>2.5×10^-5</td>
<td>2.5×10^-5</td>
<td>2.5×10^-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-103035600</td>
<td>7</td>
<td>5.4×10^-9</td>
<td>5.4×10^-9</td>
<td>5.4×10^-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-103036676</td>
<td>8</td>
<td>2.5×10^-5</td>
<td>2.5×10^-5</td>
<td>2.5×10^-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10300429</td>
<td>9</td>
<td>5.8×10^-6</td>
<td>5.8×10^-6</td>
<td>5.8×10^-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-103036107</td>
<td>10</td>
<td>2.5×10^-5</td>
<td>2.5×10^-5</td>
<td>2.5×10^-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-103072428</td>
<td>11</td>
<td>20.57</td>
<td>20.57</td>
<td>20.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-103073274</td>
<td>12</td>
<td>78.06</td>
<td>78.06</td>
<td>78.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-103073794</td>
<td>13</td>
<td>78.06</td>
<td>78.06</td>
<td>78.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-103073285</td>
<td>14</td>
<td>78.06</td>
<td>78.06</td>
<td>78.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10306764</td>
<td>15</td>
<td>78.06</td>
<td>78.06</td>
<td>78.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-103067694</td>
<td>16</td>
<td>78.06</td>
<td>78.06</td>
<td>78.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10306774</td>
<td>17</td>
<td>78.06</td>
<td>78.06</td>
<td>78.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10306774</td>
<td>18</td>
<td>78.06</td>
<td>78.06</td>
<td>78.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10306774</td>
<td>19</td>
<td>78.06</td>
<td>78.06</td>
<td>78.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10306774</td>
<td>20</td>
<td>78.06</td>
<td>78.06</td>
<td>78.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10306774</td>
<td>21</td>
<td>78.06</td>
<td>78.06</td>
<td>78.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10306774</td>
<td>22</td>
<td>78.06</td>
<td>78.06</td>
<td>78.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10306774</td>
<td>23</td>
<td>78.06</td>
<td>78.06</td>
<td>78.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10306774</td>
<td>24</td>
<td>78.06</td>
<td>78.06</td>
<td>78.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10306774</td>
<td>25</td>
<td>78.06</td>
<td>78.06</td>
<td>78.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10306774</td>
<td>26</td>
<td>78.06</td>
<td>78.06</td>
<td>78.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10306774</td>
<td>27</td>
<td>78.06</td>
<td>78.06</td>
<td>78.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10306774</td>
<td>28</td>
<td>78.06</td>
<td>78.06</td>
<td>78.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10306774</td>
<td>29</td>
<td>78.06</td>
<td>78.06</td>
<td>78.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10306774</td>
<td>30</td>
<td>78.06</td>
<td>78.06</td>
<td>78.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10306774</td>
<td>31</td>
<td>78.06</td>
<td>78.06</td>
<td>78.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10306774</td>
<td>32</td>
<td>78.06</td>
<td>78.06</td>
<td>78.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10306774</td>
<td>33</td>
<td>78.06</td>
<td>78.06</td>
<td>78.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10306774</td>
<td>34</td>
<td>78.06</td>
<td>78.06</td>
<td>78.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10306774</td>
<td>35</td>
<td>78.06</td>
<td>78.06</td>
<td>78.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10306774</td>
<td>36</td>
<td>78.06</td>
<td>78.06</td>
<td>78.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10306774</td>
<td>37</td>
<td>78.06</td>
<td>78.06</td>
<td>78.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10306774</td>
<td>38</td>
<td>78.06</td>
<td>78.06</td>
<td>78.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10306774</td>
<td>39</td>
<td>78.06</td>
<td>78.06</td>
<td>78.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZE-10306774</td>
<td>40</td>
<td>78.06</td>
<td>78.06</td>
<td>78.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table and heatmap represent the results of a genome-wide association study (GWAS), showing the association between single nucleotide polymorphisms (SNPs) and various agronomic traits. The heat map visualizes the p-values for each SNP across different traits, with darker colors indicating lower p-values, which suggests a stronger association between the SNP and the trait.
Gene model

- Drought responsive genes
- Other genes

Chromosome 5

- MYB transcription factor
- ERF - Ethylene responsive factor
- SBP - Transcription Factor

Grain Yield

- IARI
- Hyderabad
- Karimnagar
- Mean
- M1
- M2
- M3
- M4
Functional roles of candidate SNPs associated with drought tolerance

Drought-tolerant genes
- WRKY, BZIP, CAMTA, BHHL, MYB, C2H2, ZF-HD, NCED, NAC, SBP, ERF, NIF-YA

Molecular mechanisms
- Auxin Biosynthesis & Transport
- Phospholipid Hydrolysis
- tpa: Phospholipase D family partial
- GST, GP, MAPK
- MYB, BHHL

Trait expression
- NAC, flavin monoxygenase, V-type PPase H⁺ pump
- ABA Dependent Pathway
- Root Development
- Detoxification Signaling
- Epigenetic Mechanism
- DNA Methylation
- DCM
- V-type ATPase & PPase H⁺ pump
- Stomatal Closure
- Ion Homeostasis
- Reduced water potential
- Flowering
- ROS Homeostasis
- ABA Dependent Pathway
- Molybdenum cofactor sulfurase
Expression of Transcriptomes

HKI1532 (Tolerant) PC3 (Sensitive)

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultivars</td>
<td>100</td>
</tr>
<tr>
<td>Representation</td>
<td>B73, Ohio43, W22, W23, W64A, and Black Mexican Sweet</td>
</tr>
<tr>
<td>Number of probe sets</td>
<td>17,555</td>
</tr>
<tr>
<td>Transcripts</td>
<td>14,850</td>
</tr>
<tr>
<td>Genes</td>
<td>13,339</td>
</tr>
<tr>
<td>Genes in UniGene clusters</td>
<td>12,113</td>
</tr>
</tbody>
</table>
174 drought-related genes
75 unique to HKI1532

- HSP-coding gene was co-expressed with 19 DEGs
- MYB coexpressed with 50 DEGs
- ERF coexpressed 84 DEGs
Drought-responsive genes of HKI1532

- **Cluster 1:** Stomatal closure (*NAC, WRKY, ERF, AP2, MYB, SBP, C2H2, and NF-YB)*
- **Cluster 2:** Signalling and phosphoprotein cascade genes
- **Cluster 3:** Photosynthesis

Cluster 1 Details:
- Stomatal closure genes include *NAC, WRKY, ERF, AP2, MYB, SBP, C2H2, and NF-YB*.

Cluster 2 Details:
- Signalling and phosphoprotein cascade genes.

Cluster 3 Details:
- Photosynthesis-related genes.

Legend:
- **Up-regulated DEGs:**
 - 0-10 Fold Change
 - >10-100 Fold Change
 - >100-1000 Fold Change
 - >1000 Fold Change
- **Down-regulated DEGs:**
 - 0-10 Fold Change
 - >10-100 Fold Change
 - >100-1000 Fold Change
 - >1000 Fold Change
Functional relationship of genes

A. Maintenance of photosynthesis and other metabolic pathways

B. Maintenance of water balance

C. ROS scavenging
Comparative co-expression maps

Maize
544 samples, 1810 genes

Rice
1531 samples, 2539 genes

Wheat
901 samples, 3438 genes
bHLH
- Regulate ABA, signalling, jasmonate pathway

C2H2
- Stomatal closure, ABA pathway, regulation of transcription

NAC
- Stomatal closure, embryo/flower/root development, cell wall

ERF
- Transcription regulator

WRKY
- ABA signalling, jasmonate, embryogenesis, signalling

Comparative gene regulation

Maize
- 17 families
- 287 genes

Rice
- 17 families
- 494 genes

Wheat
- 17 families
- 449 genes
Role of miRNAs in gene regulation

- 42 target mRNAs expressed differentially under drought were regulated by 13 miRNAs families.
- Single miRNA was controlling multiple mRNA targets.

Expression of miRNAs and their targets

<table>
<thead>
<tr>
<th>MiRNA</th>
<th>Target mRNA</th>
<th>Function</th>
<th>HKI1532 (Tolerant) miRNA</th>
<th>PC3 (Sensitive) miRNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>zma-miR 159e-3p</td>
<td>11944063.m</td>
<td>MYB TF</td>
<td>Down</td>
<td>Up</td>
</tr>
<tr>
<td>zma-miR 164h-5p</td>
<td>46106013.m</td>
<td>NAC TF</td>
<td>Down</td>
<td>Up</td>
</tr>
<tr>
<td>zma-miR 166a-3p</td>
<td>54238013.m</td>
<td>ERF TF</td>
<td>Down</td>
<td>Up</td>
</tr>
</tbody>
</table>
Summary

Genes/SNPs responsible for important biological functions
- Photosynthesis
- Osmoregulation
- ROS scavenging
- Metabolic processes

Selected founder lines
- Shuffling/combining the alleles
- Selection of genotypes with better allele/gene compositions
Acknowledgements

Donors
National Agricultural Innovation Project
Network Project on Functional Genomics, ICAR

Collaborators
Firoz Hossain
Sumalini
Shobarani
Sreelatha

Research Fellows/Technicians
Rajesh Kumar
Kaliyugam
Rinku Sharma
Kanika
Sweta
Swati
Rita Kumari
Namratha
THANK YOU